The Preparation of the ReCl₆- Ion

By P. W. FRAIS and C. J. L. LOCK*

(Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada)

and A. GUEST

(Department of Chemistry, University of the West Indies, Mona, Jamaica)

Summary The ion ReCl_6^- has been prepared in the compound $[\operatorname{PCl}_4][\operatorname{ReCl}_6]$ obtained by the reaction of PCl_5 and ReCl_5 .

Although the ion ReF_6^- is known, as are the ions $\operatorname{WCl}_6^$ and $\operatorname{MoCl}_6^{-,1}$ there has been no report of the ReCl_6^- ion. Attempts to prepare the ReCl_6^- ion by treating ReCl_5 with alkali-metal halide salts have been unsuccessful, yielding instead $\operatorname{ReCl}_6^{2-,1}$

Machmer² has reported that the reaction of rhenium metal and phosphorus pentachloride in a sealed tube at 500° yielded ReCl₅, PCl₃. We have shown that if the reaction was carried out with an excess of chlorine present a different compound was obtained which we have shown by analysis to be RePCl_{10} . The same compound was synthesised by direct interaction of ReCl_5 and PCl_5 at 300° in a sealed tube. The compound was easily purified. Excess of phosphorus chlorides was removed by pumping at room temperature, and RePCl_{10} was sublimed slowly *in vacuo* at 150°. Thus, RePCl_{10} is much more stable than the ReCl_5 -SbCl₅ reaction product which under similar conditions yielded ReCl_4 .³

Despite the volatility of RePCl_{10} , spectroscopic studies suggest that the compound is ionised in the solid state as $[\text{PCl}_4^+][\text{ReCl}_6^-]$. The i.r. spectrum is summarised (Table), with data for Cs₂ReCl₆. The strong peak at 649 cm⁻¹ is too high to be caused by an Re-Cl vibration⁴ and too low for an Re=O vibration⁵ arising from oxygen contamination of the product. PCl₅ vapour,⁶ PCl₃⁷ and POCl₃⁷ do not absorb in this region but an absorption at about 649 cm^{-1} is

The i.r. spectra of RePCl₁₀ and Cs₂ReCl₆

Cs ₂ ReCl _e				
Assignment		(Ref. 9)	Ťhis work	RePCl ₁₀
v_3 (PCl ₄ +)				649
$v_2 + v_3$		584 m.w	584 w.	582 w.
$v_3 + v_5$		473 w.	486 v.w.	490 v.w.
ν ₃		313 v.s.	311 v .s.	318 v.s.
ν ₄		172 s.	170s.	161 s.
Units: cm ⁻¹ .				

characteristic of the PCl_4^+ ion⁶ and similar bands have been observed at 650 and 640 cm⁻¹ for $[PCl_4^+][VOCl_4^-]$ and [PCl₄⁺][VCl₅⁻].⁸ The peaks in the far-i.r. region have been assigned to ReCl_6^- modes by comparison with the $\operatorname{ReCl}_6^{2-}$ ion.9 The increase in $\nu_3,$ and decrease in ν_4 on oxidation have been observed previously for WCl6²⁻/WCl6^{-4,5} and IrCl₆³⁻/IrCl₆^{2-.5}

0.0108 M- and 0.0048 M-Methyl cyanide solutions of RePCl₁₀ had molar conductivities of 104 and 121 ohm⁻¹ cm² giving a value at infinite dilution of ca. $134 \text{ ohm}^{-1} \text{ cm}^2$ which is very similar to that for [PCl₄+][SbCl₆-] and consistent with a univalent electrolyte.¹⁰ The conductivity decreased slowly with time, the stronger solution showing a 20% decrease in three days and this was accompanied by a decrease in the red colour of the solution. We postulate that this is caused by oxygen or water, since exposure to air causes the same reaction to occur in a few minutes.

Over the temperature range 92-290K the magnetic susceptibility of [PCl₄+][ReCl₆-] obeys the Curie-Weiss Law within 1%, with a Curie constant of 0.904 and Curie-Weiss constant of 60°. μ_{eff} ranges from 2.11 B.M. at 92K to 2.47 B.M. at 290K. The results are reasonable for a d^2 ion in a close-to octahedral field with a medium antiferromagnetic interaction. The interaction is less than that observed for WCl₆²⁻¹¹ salts but is to be expected because of the size of the PCl_4^+ cation.

Attempts to prepare other salts of ReCl₆- have so far been unsuccessful; alkali-metal halides reacted with $[PCl_{4}^{+}][ReCl_{6}^{-}]$ to give $ReCl_{6}^{2-}$ salts, and organic ammonjum. phosphonium, or arsonium ions gave black tars.

(Received, October 2nd, 1970; Com. 1692.)

¹ J. H. Canterford and R. Colton, "Halides of the Second and Third row Transition Metals," Wiley-Interscience, New York, 1968, pp. 245 and 297. ² P. Machmer, Inorg. and Nuclear Chem. Letters, 1968, 4, 91.

 ³ P. W. Frais, A. Guest, and C. J. L. Lock, Canad. J. Chem., 1969, 47, 1069.
⁴ R. J. H. Clark, Spectrochim. Acta, 1965, 21, 955; D. M. Adams, H. A. Gebbie, and R. D. Peacock, Nature, 1963, 199, 278; D. M. Adams and H. A. Gebbie, Spectrochim. Acta, 1963, 19, 925.

⁵ C. G. Barraclough, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 1959, 3552; N. P. Johnson, C. J. L. Lock, and G. Wilkinson, ibid., 1964, 1054.

⁶ I. R. Beattie and M. Webster, J. Chem. Soc., 1963, 38.

⁷ K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," Wiley, New York, 1963, pp. 86 and 112.

⁸ I. M. Griffiths and D. Nichols, Chem. Comm., 1970, 713.

⁹ L. A. Woodward and M. J. Ware, Spectrochim. Acta, 1964, 20, 71. ¹⁰ L. Kolditz, Z. anorg. Chem., 1957, 289, 128.

¹¹ D. A. Edwards, R. D. Peacock, and A. Said, J. Chem. Soc., 1962, 4643.